
Logging
Saving the results of a round goes beyond wins or losses. We also
need to have a record of moves. Referees do not have knowledge
of our file system, so I needed to implement a universal way to
handle logging of moves made during each round of a match. On
successful completion of a match, the Ruby round runner exports
the parsed game log as a JSON file. This game log is generated
from messages sent over the TCP socket. A very simple API match-
logs/{matchID}/{roundID}.json serves the data to our in-browser
replay viewer via an AJAX request.

Replaying Turn-Based Games
Bradley Rosenfeld

Introduction
The Game Contest Server is an effective way for professors to
manage game contests between student developed players. But it
is an inherently closed system. Programs are run without human
intervention and there isn’t a way for students to see how their
programs run as they execute. Visualizing gameplay during a
round helps students learn how their players are behaving.

Replaying rounds is an essential part of the Game Contest Server.
Over the course of the project, I collaborated with our team to
design and implement this feature.

Normalizing Rounds
Initially, the system was designed with matches in mind.
Professors create contests which can have tournaments. Each
tournament has matches between the assigned players. Matches
should have 1 or more repeated rounds between the same players.
Referees might or might not support rounds. Checkers does not
support rounds by default, while Battleship does. To get around
this problem, the system was designed to “emulate” rounds by
creating many, duplicate matches; or just one match if the referee
supported rounds internally.

January 2016

Conclusion
I learned a lot about writing high performance JavaScript during this project. The unique requirements of the
project constrained me to writing code that could be run thousands of times on many devices. Collaborating

with my team to implement features forced me to learn to rely on other programmers for key features.

Manager TCP Protocol
Referees are executable files uploaded by professors that manage
gameplay during competition matches. Previously, players and
referees would often be run in the same executable which made
cheating possible. The Game Contest Server intentionally spawns
players and referees as separate processes for isolation. TCP
sockets are used to handle communication between processes.

I designed a simple TCP protocol so that referees can report the
status of the game as well as moves during the course of the
round. The protocol is defined with command:value pairs that the
game manager parses. Pipes are used as delimiters to separate
fields in the value.

Example

Replay API
The Game Contest Server supports an infinite number of game
types. Because the referee executable actually defines the game
logic, the system has no real sense of what a “game” is. Designing
a replay viewer for the browser was a unique challenge as it
needed to be flexible enough to display any game.

Games can have thousands of moves during each round. Saving a
gamestate for every move is very inefficient, but attempting to
calculate the gamestate from individual moves is performance
intensive in the web browser. We use a hybrid model where the
referee sends a gamestate every N moves. In the browser we
calculate the game states between each delta move. This reduces
the amount of storage required and makes calculating a
gamestate trivial.

I made the choice to write the replay
viewer in vanilla JavaScript. Using a
framework like Angular or a library
like jQuery would have sped up the
initial development process, but any
new developers would have needed
to learn the framework. One of the
advantages of using JavaScript’s object prototype is the high level
of extensibility for plugins.

Instructors upload a Replay Plugin along with with their referees.
This plugin can modify the Replay object prototype in order to
implement game specific parsing of the log file. We decided to use
PIXI.js for a cross-browser 2D rendering engine.

Future Work
To encourage adoption of the system, Replay Plugins should be
written for all the games used by the CSE Department (Risk,
Battleship, Settlers of Catan, etc…)

This design was flawed because we
needed to be able to access individual
rounds in order to show the replay of
that round. Without a concept of a
round in the database, the system had
no way of figuring out which
“matches” were actually related.
Furthermore we couldn’t effectively
determine the results for an
individual match. To solve this
problem, we added a new rounds
entity to the database design.

port:2222
match:start
round:start|{}
move:description|movedata
gamestate:{}
round:end
roundresult:playername|result|score
roundresult:playername|result|score
match:end
matchresult:playername|result|roundswon
matchresult:playername|result|roundswon

Department of Computer Science & Engineering

Taylor University, Upland IN 46989

